Empirical likelihood for heteroscedastic partially linear models
نویسنده
چکیده
AMS 2000 subject classifications: 62F35 62G20 Keywords: Double robustness Empirical likelihood Heteroscedasticity Kernel estimation Partially linear model Semiparametric efficiency a b s t r a c t We make empirical-likelihood-based inference for the parameters in heteroscedastic partially linear models. Unlike the existing empirical likelihood procedures for heteroscedastic partially linear models, the proposed empirical likelihood is constructed using components of a semiparametric efficient score. We show that it retains the double robustness feature of the semiparametric efficient estimator for the parameters and shares the desirable properties of the empirical likelihood for linear models. Compared with the normal approximation method and the existing empirical likelihood methods, the empirical likelihood method based on the semiparametric efficient score is more attractive not only theoretically but empirically. Simulation studies demonstrate that the proposed empirical likelihood provides smaller confidence regions than that based on semiparametric inefficient estimating equations subject to the same coverage probabilities. Hence, the proposed empirical likelihood is preferred to the normal approximation method as well as the empirical likelihood method based on semiparametric inefficient estimating equations, and it should be useful in practice.
منابع مشابه
Empirical estimates for various correlations in longitudinal-dynamic heteroscedastic hierarchical normal models
In this paper, we first define longitudinal-dynamic heteroscedastic hierarchical normal models. These models can be used to fit longitudinal data in which the dependency structure is constructed through a dynamic model rather than observations. We discuss different methods for estimating the hyper-parameters. Then the corresponding estimates for the hyper-parameter that causes the association...
متن کاملVariance function partially linear single-index models
We consider heteroscedastic regression models where the mean function is a partially linear single-index model and the variance function depends on a generalized partially linear single-index model.We do not insist that the variance function depends only on the mean function, as happens in the classical generalized partially linear single-index model.We develop efficient and practical estimatio...
متن کاملEmpirical Likelihood for Partially Linear Models
In this paper, we consider the application of the empirical likelihood method to partially linear model. Unlike the usual cases, we first propose an approximation to the residual of the model to deal with the nonparametric part so that Owen's (1990) empirical likelihood approach can be applied. Then, under quite general conditions, we prove that the empirical log-likelihood ratio statistic is a...
متن کاملGeneralizing Full Rank Conditions in Heteroscedastic Censored Regression Models
Powell's(1984) Censored Least Absolute Deviations (CLAD) estimator for the censored linear regression model has been regarded as a desirable alternative to maximum likelihood estimation methods due to its robustness to conditional heteroscedasticity and distributional misspeci ̄cation of the error term. However, the CLAD estimation procedure has failed in certain empirical applications (e.g. Hon...
متن کاملAn Efficient Algorithm for REML in Heteroscedastic Regression∗
This paper considers REML (residual or restricted maximum likelihood) estimation for heteroscedastic linear models. An explicit algorithm is given for REML-scoring which yields the REML estimates together with their standard errors and likelihood values. The algorithm includes a Levenberg-Marquardt restricted step modification which ensures that the REML-likelihood increases at each iteration. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Multivariate Analysis
دوره 100 شماره
صفحات -
تاریخ انتشار 2009